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A plant line schedule specifies a plant’s sustained batch operations over time with detail
sufficient to manage all activities. Plantwide considerations include restrictions on how pro-
duction centers can be formed from production lines, packaging lines, conveyers, and so forth;
the cost and time of product-package item setups, changeovers, and shutdowns; honoring in-
stock service levels, minimum inventory, and committed shipments; recognizing efficiency
gains with longer batch runs; respecting crew constraints; and the costs of materials, labor,
and carrying inventory. We developed a cost-minimizing optimization model, PROFITS, that
features multiple independent time streams for various categories of events thatmimic existing
periodic reviews of operations. PROFITS is embedded in a graphical user interface that eases
the grueling aspects of scheduling: preparing data, controlling scenarios, and visualizing re-
sults. At Hidden Valley Manufacturing Company, completing an eight-week plant-line sched-
ule takes about an hour. This is much faster than manual scheduling was—and the schedules
are better.
(Industries: agriculture–food. Production: scheduling–planning.)

W e developed an optimization model for plant-
line scheduling of sustained, single-stage batch

production and packaging of multiple product-
package items over a multiweek planning horizon.
Most consumer products, with examples ranging from
packaged food products to industrial lubricants, are
produced and packaged in this way. We seek coordi-
nated patterns of production and packaging that min-
imize total cost; costs include regular-time production,
overtime production, item setup, item-to-item change-
overs, item shutdown, and inventory storage, as well
as penalties for shortages (unmet demand), safety-
stock violations, and ending-inventory violations. The
amount of time lost performing item setups, change-

overs, and shutdowns depends on the sequence of
items produced. For each item, the model tracks be-
ginning inventory, time-varying demand forecasts,
committed shipments and times, and goals for safety
stock and ending inventory. The plant has limited ca-
pacity for storing inventory.
A production center is a group of one or more pro-

duction lines, plus one or more packaging lines, con-
veyers, and so forth, intended for sustained activity.
Firms plan production-center activities in terms of pro-
duction campaigns. A production campaign is a
production-center schedule that details, to the nearest
minute, events in a sequence of production periods,
changeovers from item to item, and idle periods.
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Various production centers, running at potentially dif-
ferent rates, may produce a given item. The production
rate of an item may improve with experience over the
duration of a batch. A complete plant schedule is a rec-
ommended portfolio of campaigns, including the exact
time of every event.
To select a plant schedule, one restricts the choice

of a group of alternate candidate production cam-
paigns and measures their joint consequences by pe-
riodically reviewing their collective influence on sev-
eral types of system states. Reviewing a particular
type of state at a particular time gives rise to an event
of that type. Successive events of a given type de-
marcate a time epoch of that type (Figure 1). The type-
one epoch (the most aggregate) is the planning hori-
zon. At this level, we summarize cost, production,
and packaging activity, and the satisfaction of
horizon-ending inventory goals. At each type-two
event, we reconcile production and demand during
the preceding type-two epoch with their conse-
quences on the state of safety stock and inventory. At
this review, we also assess plant availability at regular
and overtime cost, plant inventory storage limits, and
for each item, its demand, inventory-holding cost,
and safety-stock goal. During each type-three epoch,
line usage for both regular and overtime is limited,
and simultaneous use of production and packaging-
lines is restricted because of limits on crew availabil-
ity and plant layout. Production centers can be acti-
vated or deactivated only at a type-four event. Each
type-five event is a planned shipment. More epoch
types may be defined as needed.
A production center usually consists of just one pro-

duction line and one packaging line, but their config-
urations may be more complex. Engineers develop
standards for each configuration’s aggregate operation
and efficiency: For each production line, they set stan-
dard throughput rates for each product and product-
to-product changeover costs and times. For each pack-
aging line, they also set throughput rates and costs and
times for changing packages, cartons, or labels. For
simple production centers, the aggregate rates and
costs easily derive from the rates and costs of their
components.
For item-to-item changeovers, which include special

cases for empty-to-item setup and item-to-empty shut-

down, changeover times and costs are sequence-
dependent (for example, a changeover from item A to
item B may differ in cost and time from the reverse
order). Empty-to-item setup times and costs are inde-
pendent of any prior activity, and item-to-empty shut-
down times and costs are independent of any follow-
ing activity.
In the Appendix, we explain how to generate can-

didate production campaigns and describe an integer
linear program, PROFITS, that selects the best plant
schedule from a set of alternate campaigns.

Why a New Model?
Models for optimizing single-stage, multiple-item pro-
duction and packaging range in scope from long-term
master planning to short-term scheduling (Lawrence
and Zanakis 1984). Master-planning models use time
epochs of weeks or months (for example, Nicholson
and Pullen 1971). Linear-programming (LP) master-
planning models ignore the fixed costs and delays of
setups and changeovers. Integer linear programs
(ILPs) for master planning typically represent setup
time as a fixed time and setup cost by a fixed charge
incurred whenever nonzero production of an item oc-
curs in an epoch (for example, Brown et al. 1981). To
limit the number of integer variables, the developers
of such models seldom directly capture item-to-item
changeovers. These ILP models do a better job than LP
models in accounting for multiple-item production, in-
ventory, and limited shared capacity but still do a poor
job of representing setups and changeovers.
In contrast, short-term production-scheduling mod-

els typically represent every admissible sequence of
operations in terms of pair-wise orders and cover a
time horizon of just a few hours. Integer linear pro-
grams of such representations suffer from the curse of
dimensionality: Representing fixed charges and times
for item-to-item changeovers requires a binary deci-
sion variable for every ordered pair of items. Sched-
uling models do a good job of accounting for setup and
changeover costs and delays. But, because the conse-
quences of independent sequences of operations are
awkward to accumulate in a common, fixed-time in-
crement, scheduling models do a poor job of repre-
senting limited capacities, especially shared capacities.
In practice, to solve such scheduling models, when the
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Figure 1: This hypothetical plant schedule consists of three production campaigns. Campaign 1 begins on Monday
and starts a production run of two quantity increments of item D at 6:00 am, starts a shutdown at 1:32 pm,
becomes idle at 5:47 pm, and ends at 8:30 pm. Five types of events and epochs are shown at the top of the
figure. The state of inventory for each item is accounted for only at the transition from one day (type-two epoch)
to the next and is based on the inventory at the start of the day, the day’s demand, and daily production from
the production campaigns. The number of production and packaging lines operating simultaneously is restricted
during each shift (type-three epoch). Here, no line is available during the night shift on Tuesday, only one
production and packaging line is available for the swing shift on Tuesday, and two packaging and production
lines are available for all other shifts. Production campaign 2 starts with a setup, produces item A, continues
with a changeover, produces item B, and terminates with a shutdown. Production campaign 3 starts producing
item E on Monday at the beginning of period 4 (type-four epoch); production centers can start or stop only at
the transition from one type-four epoch to the next. Campaign 3 shows a situation where neither an initial setup
nor a final shutdown is required. Two shipments are scheduled at 1:45 pm and at 12:20 am: these are type-five
events.

models have more than a few items or have extended
time horizons, we resort to heuristics (for example,
Kuik and Salomon 1990, Glover and Laguna 1997).
Most of these heuristics can’t tell you how far from
optimal their schedules are, and the heuristics that do

offer model-specific bounds typically give only weak
bounds. Heuristics are delicate, requiring a lot of hand-
crafted tuning, and the best prescription for finding
better schedules is of uncertain effectiveness: keep
searching.
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Master-planning models are inadequate for plant-
line scheduling when setups, item-to-item change-
overs, and shutdowns are too significant to approxi-
mate. LP models cannot represent the essential but
concave features of efficiency that improve with batch
size. Short-term scheduling models attend to detail
finer than needed to manage plant-line operations and
do a poor job of identifying and allocating scarce
resources.
A heuristic hybrid of LP and a quadratic assignment

model (Geoffrion and Graves 1976) has been used to
schedule plant lines. This hybrid has been extended to
larger scale for other scheduling problems (Sibre 1977).

The bleach-line tool never produced
acceptable schedules.

This hybrid is a clever technique, and it can provide
good solutions quickly, but it requires a lot of tuning,
both of its sequencing heuristic and to control itera-
tions between the LP and sequencing. And it’s a heu-
ristic that does not produce a very good objective as-
sessment of solution quality.
The PROFITS model is a multiperiod, multiproduct

model for production lot-sizing and scheduling with
both local and plantwide resource limitations. The
model represents sequence-dependent setup times and
costs on parallel, nonidentical production centers that
can be configured to operate simultaneously only in
limited combinations. The closest model we find in the
literature is by Kang et al. (1999), who assume zero
setup times, no joint production-center limitations,
minimum andmaximum lot sizes that are independent
of items and production centers, and no plantwide in-
ventory limits.
The variety of time epochs is a distinguishing feature

here. Without such a variety, we must massage the
data into some universal time increment without ov-
eraggregating or assuming greater time fidelity than is
justified. This is difficult. Worse, forcing a single time-
period duration on a decision-support system inflicts
on its users the burden of fabricating data to suit the
system. It is much better and easier to provide a timing
mechanism for the model to match the time resolution
at which each process is managed. In practice, we need

only a few types of periodic-review intervals, and al-
though each epoch type can in principle have varying
duration and be independent of other types, most ep-
och types have fixed length, and epoch types align in
natural, nested periodic intervals (for instance, hours,
half-shifts, shifts, days, weeks).
Real-world production-line schedules are expressed

in terms of campaigns, familiar features of ubiquitous
Gantt charts (Clark 1922). The scheduler needs direct
means to visualize, evaluate, and if necessary manu-
ally control most details of a planned campaign. Nei-
ther master-planning models, using fixed-length time
epochs, nor event-scheduling models, using se-
quences, express production plans directly in terms of
campaigns.
We use time-cumulative goals for production and

inventory because a cumulative violation under or
over these goals persists over time until it is remedied.
Time-cumulative goals promote plant schedules that
have “persistence” (Brown et al. 1997): When you can’t
meet goals immediately, it is desirable to meet them as
soon as possible thereafter so that the total effort stays
in concert with the overall guidance provided.
We assume that a production campaign will not re-

quire too many events. Otherwise, we would have to
limit the number of event-permutation schedules that
are generated as alternate candidate campaigns, and
wemight thus overlook a good campaign. Fortunately,
this has not proven to be a practical concern. Even a
plant operating 24x7 incorporates planned mainte-
nance, safety meetings, weekend shift changes, and so
forth into its schedule. In reality, production cam-
paigns are interrupted during planned epochs, and
this is a saving grace. Also, eliminating very minute
details—ignoring differences that don’t make a differ-
ence—in admissible production campaigns limits their
numbers.
The PROFITS integer linear program is a large set-

packing model with many side constraints. (A typical
instance has several hundred packing constraints,
thousands of side constraints, thousands of binary
variables, and many hundreds of thousands of tech-
nological coefficients.) The set pack provides the es-
sential combinatoric scheduling advice, while the side
constraints govern the usual LP concerns about goals
and scarce resources. The power of this model comes
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at a price: Instances can be very difficult to solve. Each
binary column can have hundreds of nonzero coeffi-
cients, and this characteristic is widely believed to be
the hallmark of a difficult set pack. Hoffman and
Padberg (1993), for example, show that problems get
harder to solve as the number of rows and coefficients
per column increase, and they say that their hardest
problems seem to derive from adding side constraints.
We have invested a lot of time learning how to solve
such models (Brown and Olson 1994). But it is not lost
on us that if we encounter a problem we can’t solve,
this set pack is ideally suited (with all binary variables)
for simple heuristic search: We hope not to have to
resort to a heuristic.

Implementation
PROFITS offers some additional features that permit
its use in the real world (Figures 2, 3, 4, 5, and 6). Fore-
most, everything is viewed and manipulated in a
graphical user interface and modeling environment
built for the purpose. We used the PowerVista devel-
oper toolkit (2001) because it offers fast prototyping,
good scalability, an embedded database, links to
widely available commercial spreadsheet anddatabase
packages, user-customizable screens and reports,Web-
enabled features, and most important, graphics of ex-
cellent quality. Initial development required about a
month, and continuingmaintenance and support takes
a day now and then.
The interface displays demand data, production and

changeover data, production center assignments, and
complete plant-line schedules in both conventional
tabular form and graphically. The interface has the
look and feel of a Windows application, but it is de-
signed to support an experienced production schedu-
ler: The displays are dense with function buttons and
features reminding the scheduler what procedures
must be carried out, offering instant navigation from
any point in the database to any other, automatic cat-
aloging of multiple versions of a given problem for
parallel analysis and comparison, and function buttons
that simplify complicated operations on the data and
enable easy manual override of part or all of any
schedule.
PROFITS accepts and respects user mandates, such

as “produce exactly according to this schedule for the
first seven days, produce no more than 100,000 units
of this item before the ninth day, and produce at least
50,000 units of this item by the 10th day.”
The various displays are all endowed with features

one expects nowadays, such as flyover, drilldown, and
help wizards. The distinctive tool icons invoke special
actions, such as the bulk import of a scenario from an
exogenous business system and cataloging alternate
plant schedules for the same plant or for many plants.
Preparing a plant-line schedule from the initial im-

port of data to the first complete (candidate) schedule
can take as little as 10minuteswhen users have already
prepared the static engineering changeover data. Ini-
tially setting up such engineering standards and refin-
ing them takes much longer, but the result is durable.

Hidden Valley Food Products
Company
In the 1960s, guests at the Hidden Valley Ranch in the
Santa Ynez mountains of Southern California fell in
love with its salad dressing. As time went on, many
others did too as the ranch satisfied demand for the
dressing through a successful mail-order business sell-
ing to all 50 states and 32 foreign countries. In 1970,
the companymoved production of the originalHidden
Valley Ranch salad dressing—a dry packet of season-
ings to which the consumer adds buttermilk and may-
onnaise—to Sparks, Nevada. The Clorox Company
bought the business in 1972. Today, it has manufac-
turing sites in Reno, Nevada, and Wheeling, Illinois
that produce a portfolio of brands, including the origi-
nal Hidden Valley dressing and dips, bottled Hidden
Valley salad dressings, KC Masterpiece barbeque
sauces and marinades, Kitchen Bouquet browning
sauce, and Salad Crispins.
Hidden Valley bottled brands—covering more than

75 items, 30 flavors, and 15 package sizes—are pro-
duced in continuous mixing and filling operations.
Each process line mixes dry and liquid raw materials
into a dressing or sauce ready for packaging. Auto-
mated packaging lines fill, package, and palletize the
finished products, which are then shipped to retail and
institutional customers.
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Figure 2: This representation of a demand-object configuration shows how input is presented and how one
maneuvers through it via button clicks. At the left is a demand list showing, for example, 1,957 units of desired
safety stock for item 1 on November 21, 2000. The tool icons at the top left offer, from left to right, to filter out
all but rows with desired attributes and respectively to locate on the first row matching a query, sort rows, save
the configuration, load another configuration, restore a changed configuration, delete a rule, display a row record
for further manipulation, save a change, and close the window. Across the first row, clicking the marked UPC
selection offers a directory, shown at the upper right, with links to alternate items. Clicking Date presents a
calendar with a selected date, which can be changed within the current month by pushing another date button,
or scrolling to prior or following months via the arrow tabs. Clicking Demand Type offers the menu of alternatives
at the lower right.

To insure the highest standards in flavor, purity, and
sanitation, Hidden Valley spends time and money on
certain flavor changeovers.
Because most products have limited shelf lives, the

company must synchronize production closely with
shipping. Many raw materials have long lead times
and short shelf lives: schedules must forecast raw-
materials requirements accurately.
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Figure 3: A changeover from item 1 to item 2 requires 11.3 hours, but the reverse requires 6.7 hours. A 24-hour
changeover is to be avoided. Tool icons remind the scheduler what procedures must be carried out and offer
access to changeover costs and other related data. There is also a package-to-package changeover matrix.
Changeovers may also be a function of the production center or common item attributes (for example, package
type), and PROFITS provides similar changeover views for these attributes. The total impact of a particular
changeover is defined as a function of all such components.

As Hidden Valley has grown, it has invested in pro-
cess and package technology to gain operational flex-
ibility. For example, it can now produce many product
flavors and sizes on various processing and packaging
lines, and a single processing line can now simulta-
neously serve multiple packaging lines.
Production flexibility helps the company to provide

good customer service but complicates scheduling. A
plant-line scheduler, manually balancing production
capacity with raw-material availability, finished goods
inventories, and shipping plans, may only have time
to develop a schedule that works. By 1996, HiddenVal-
ley recognized that it needed to make schedulingmore
systematic. It wanted to automate the time-consuming
task of evaluating alternatives, enabling the scheduler
to function at a higher level in the business and to de-
liver better and more comprehensive schedules to the
production floor.
Clorox has an optimization-based scheduling sys-

tem for its bleach lines, and it tried to convert this ap-
plication for use at Hidden Valley. However, sched-
uling the bottled-dressing lines is considerably more
complex than scheduling bleach production. The
bleach-line tool never produced acceptable schedules
or reasonable run times.

Clorox decided to get an entirely new plant-line
scheduling system, customized for Hidden Valley and
meeting the following requirements:
—Over an eight-week planning horizon, to schedule

production of over 75 different items from more than
30 flavors and 15 package sizes;
—To try to satisfy all inventory-level and in-stock

service targets;
—To follow all plant and production-center

calendars;
—To consider all possible production centers that

combined process and packaging lines, including
those with one process and two packaging lines;
—To respect crew availability;
—To schedule all changeover and sanitation activi-

ties in concert with production campaigns;
—To minimize the full schedule cost, including vari-

able production costs of materials, labor, and carrying
inventory;
—Tomake it easy for the scheduler to provide expert

advice, express special scheduling requirements, or
even freeze all or parts of an existing production sched-
ule; and
—To complete a finished production schedule in an

hour or less.
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Figure 4: Production centers PC 1 and PC 2 each follow a predetermined frozen campaign on November 22. In
this chronology, production center PC 3 commences a model-selected campaign on November 27 with a pro-
duction quantity increment for item 1 of 2,220 units. Item change 3 is a cleanup task that requires 12 hours to
complete.

Hidden Valley Results
Using PROFITS, a plant scheduler can generate an
eight-week plant production schedule in five or 10
minutes on a personal computer. The system considers
daily inventory status and honors shift-by-shift crew
limits on production-center operations and honors
constraints every half shift on utilization of production

lines and packaging lines. The optimization usually of-
fers a solution with acceptable service levels (percent
of demand satisfied) and inventory levels (percent of
desired inventory achieved) that the scheduler can use
immediately with only a few minor adjustments. We
think the solutions we get are about as good as one can
get under current business conditions. A complete
planning cycle (from data review through finished
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Figure 5: This view of a plant line schedule for item 1 shows, from left to right, date, daily starting inventory,
production, demand, ending inventory, unmet demand, and safety-stock shortage. Inventory drops 134 units
below safety stock on November 21. A campaign commences producing item 1 on November 27 with four
increments of 2,220 units each completed that day. This production run avoids any unmet demand, restores
safety stock, and builds inventory sufficient to meet a demand surge that starts on December 4.

schedule) has dropped from more than four hours to
less than one.
We ran a blind test between an experienced sched-

uler (under normal production pressures) and PROFITS
(Figure 7). The total plant-line schedule cost was

roughly the same for the two schedules. Labor utili-
zation was about the same. However, labor and equip-
ment are used much more efficiently when the sched-
ule minimizes the time lost in setting up, operating,
changing over, and shutting down to produce the right
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Figure 6: This is the same plant line schedule shown in Figure 5, but this graph makes the upcoming demand
surge for item 1 more visible, and it is easier to see the safety-stock shortage that heralds it, the anticipatory
production run building inventory, and the inventory draw-down when the demand surge arrives. By the end of
this part of the planning horizon, the demand surge has been accommodated and the system has settled back
to normal levels of activity. Such ad hoc PROFITS graphical depictions illustrate and thus help explain unusual
line-scheduling events.

Service Level (Percent) Target Inventory (Percent)

Item Class A B C Average A B C Average

Manual 95.6 87.2 100 96.0 98.8 88.9 248.6 130.0
PROFITS 99.8 97.7 99.2 99.5 106.8 100.6 118.1 108.6

Figure 7: In this comparison of service-level and target-inventory fulfill-
ment for the manual schedule and the one optimized by PROFITS, Hidden
Valley has classified its products into A, B, and C items, with A being the
most important items. Service level is the percentage of daily demand
units satisfied, and target inventory is the actual daily inventory as a
percentage of the desired daily target.

products at the right times. Service and inventory lev-
els improve, and the plants react better to the inevita-
ble demand surprises.

Conclusion
Plant-line scheduling is complex, and a good scheduler
must master a host of details about every aspect of
plant operation. Few schedulers claim to be able to do
this daunting task perfectly. PROFITS suggests sched-
ules that aren’t perfect, because many details are too
mundane to implement in a computer package and are
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better left to the experienced scheduler. We imple-
mented the essential details about the costs and effi-
ciency of production via a graphical user interface that
makes reviews and changes easy. The underlying
model mimics existing review intervals and manage-
ment cycles and thus reduces abstraction and enhances
face validity of solutions. PROFITS invites expert ad-
vice and transparently incorporates such guidance.
The goal is not to automate scheduling but to schedule
better.

Epilogue
The background research, mathematical modeling,
graphical user interface, programming, testing, and re-
fining, and everything else we describe constitute
about a quarter of the work required to complete an
implementation and support its continuing operation.
We learned some transcendent lessons from the re-
maining three-quarters of the work.
When you ask people to do things differently, you

need some form of change management. Even if they
hate the current arrangement, they will often cling to

Work to get users comfortable with,
rather than intimidated by,
computers.

the status quo as a security blanket. To implement a
new arrangement successfully, you must lead through
the change and be ready to learn from the experience
along with everyone else.
Some decision-support applications are designed for

executives, some for managers, and some for opera-
tors. Applications for capital budgeting, strategic
supply-chain design, master planning and the like are
typically designed for managers. In contrast, while
plant-line scheduling may have to be sold to execu-
tives, it must be used by schedulers, and schedulers
have to deal directly with the people actually doing
the work. The issues are different, and details really
matter. Schedulers know their business, and their suc-
cess depends on their credibility on the plant floor.
They deal day to day with crews and perhaps with
union stewards. They cannot, however, aggregate, ap-
proximate, or just assume away and ignore the essen-

tial details. Employee compensation may or may not
be tied to the performance measures you are trying to
optimize with the application.
To ensure a successful implementation, youmust do

the following:
Encourage buy-in from top management—those

who will hold you accountable for making the
change—as well as from their subordinates. If people
don’t give the application a fair chance, you may be
frustrated and risk failure.
Objectively assess your users and their capabilities.

They must be able to follow basic business procedures
prior to implementing a new software tool. Document
what procedures are in place. If some related proce-
dure is a problem, is missing, or is informal tribal
knowledge, you must shore up users’ skills prior to
implementation. Work to get users comfortable with,
rather than intimidated by, computers.
Manage expectations. Be clear about what the ap-

plication will and will not do. Clarify roles, responsi-
bilities, schedules, and deadlines. Paint a picture lit-
erally of what the application cycle looks like—a day
in the life. Users included in the development process
are much more likely to buy in to the results, particu-
larly if the transition gets tough.
Expect resistance. No matter how open people are

to new concepts, when you ask them to depart from
established practice, expect some pushback. Patience
is a virtue and a prerequisite for success.
Leverage new capabilities. The following situation

offers a typical opportunity: A production line is
scheduled to run 5,000 cases of item A over two eight-
hour shifts, then do a four-hour changeover to run item
B. The A run goes better than expected, and the 5,000
cases are finished in only 1.5 shifts. The optimal sched-
ule directs an immediate changeover. The crew argues
for taking advantage of the run efficiencies through the
end of the shift (an extra 1,600 cases of production).
What to do?
If we’ve done our work right, it should be easier than

it was before to visualize and to assess such an oppor-
tunity quickly. That so much descriptive information
is instantly available with every proposed schedule
makes it easy to ponder changes, whether by just see-
ing the line has capacity or by making another model
run. Producing the extra product is not free, and one
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can estimate the extra material, processing, and car-
rying costs. Perhaps not all of the extra product can be
sold within its shelf life, and the firm will face return
and disposal costs. Why produce a product before it’s
needed? If the employees are working straight time,
the firm pays labor cost whether they produce or not,
what’s best for the business? The rationale for an in-
formed decision may be instructive for the crew and
the scheduler, and it may be used to improve the
model.
Anticipate evolution. The schedulers and the

decision-support systemwill improvewith experience.
Nothing refines engineering standards more than an
optimization model exploiting them. Schedulers de-
velop rules of thumb from experience, and they will
improve them as they gain insight from the system.
Sooner or later, some scheduler will decide that the
system isn’t doingmuch better than amanual schedule
based on the latest rules of thumb andmay be tempted

Schedulers know how to break rules
and get away with it.

to skip the computer sessions. Manual schedulingmay
work for a while, but eventually some signal event will
arise for which optimization prescribes a completely
unforeseen alternative, deals with a new bottleneck, or
otherwise renders some insight. Conversely, schedu-
lers know how to break rules and get away with it. The
goal is synergism among the schedulers and their
decision-support system, not antagonism.

Appendix
PROFITS generates production campaigns (binary ILP
columns) as follows. Each candidate campaign is de-
fined by a production center, a start time, and a se-
quence of items and production batch quantities.
Index use:
i—item (for example, a product-package

combination).
q � 1, . . . , Q—production batch quantity increment.
w � W—work center (for example, producer, con-

veyer, or packager).
m(w)—type of work center w (for example, crew

type).

wp � {W � W . . .}—production center (for example,
a combination of work centers).

t1, t2, t3, t4, t5—times of state reviews: epoch bound-
aries. For example, t1 planning horizon, t2 production-
demand-inventory state, t3 crew constraints, t4 work-
center utilization, and t5 planned shipment.

c—production campaign (binary ILP column).
s � 1, . . . , S—sequence of item batches in a produc-

tion campaign.
Input data and [units]:
minibatchi—minimum production batch size of item

i [quantity].
batchmultiplei—production batch size multiple for

item i [quantity].
maxbatchi—maximum production batch size of item

i [quantity] (that is, (maxbatchi � minbatchi) mod batch-
multiplei � 0, and q � 1, . . . , Q � 1 � (maxbatchi �

minbatchi)/bathmultiplei).
timewp,i,q—time for production center wp to produce

item i, quantity increment q [time] (that is, the produc-
tion rate of batchmultiplei/timewp,i,q for quantity incre-
ment q may express learning effects with batch
duration).

costwp,i,q—cost for production center wp to produce
item i, quantity increment q [$].

co_timewp,i,i�—changeover time for production center
wp from item i to new item i� [time].

co_costwp,i,i�—changeover cost for production center
wp from item i to new item i� [$].
Production campaign definition:
c : {wp, t4, {i, q}s, s � 0, . . . , S}—a candidate produc-

tion campaign uses production center wp, begins at the
start of time epoch t4, and produces a sequence of
batches {i, q}s, s � 1, . . . , S, with batch s consisting of
item i[s] and batch quantity q[s]. Batch 0 represents the
production-center state immediately preceding the
campaign: If i [0] � �, just set up i [1]; an item-to-item
changeover is unnecessary.
The duration for a production campaign is planned

to be:

campaign_duration � co_time �� wp,i[s�1],i[s] ��
s q��q[s]

time � co_time .wp,i[s],q� wp,i[S],��
At any point in time, the state of a production cam-

paign is characterized by what (if anything) is being
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produced, the rate (if any) of production, and the rate
of cost expenditure. Production rates and cost rates are
assumed to be constant during each production batch
quantity increment or during any changeover.
Accordingly, to trace campaign production and cost

over continuous time, one need only record the dis-
crete time of each event that changes a state. These
event times and state changes are easily enumerated
by recording the term-by-term contributions and states
of the partial sums accumulated left-to-right in the ex-
pression above.
To evaluate a candidate production campaign, sort

a list of state-changing campaign events by time over
epoch t1 along with epoch events over scales t2, t3, t4,
and t5.
Proceeding over this ordered event list, it is straight-

forward to accumulate event by event the output data
for production campaign c (from which coefficients of
binary ILP column c are derived):

makec,i,t2—campaign c production quantity of item i
during epoch t2 [quantity].

workc,m,t3—crew for campaign c on work center type
m during epoch t3 [people].

dockc,i,t5—campaign c production quantity of item i
during epoch t5 [quantity].

costc—cost of production campaign c [$].
{c}w,t4—campaigns c that use work center w during

epoch t4.
When we have too many candidate campaigns, we

filter them to select a good subset of reasonable size.
Sieves consider the most likely production increments
given the demand and inventory state over the plan-
ning horizon; make sure that each candidate item ap-
pears in a representative number of campaigns; favor
campaigns with advantageous setups, changeovers,
and shutdowns; concentrate on campaigns that pro-
duce items in critically short supply; follow expert ad-
vice that good campaigns have these properties; and
so forth.
The PROFITS integer linear program selects an op-

timal portfolio of production campaigns from all ad-
missible candidates:
Index use:
i—item.
w � W—work center (for example, producer, con-

veyer, or packager).
m—crew type of work center.

t1, t2, t3, t4, t5—times of state reviews: epoch bound-
aries. For example, t1 planning horizon, t2 production-
demand-inventory state, t3 crew constraints, t4 work
center utilization, and t5 planned shipment.

c—production campaign (binary ILP column).
{c}w,t4—campaigns c that use work center w during

epoch t4.
Input data and [units]:
demandi,t2—demand for item i during epoch t2

[quantity].
makec,i,t2—campaign c production of item i during

epoch t2 [quantity].
minstocki,t2—minimum inventory of item i at end of

epoch t2 [quantity].
spacei—storage capacity per quantity i [space/

quantity].
maxspacet2—maximum inventory at end of epoch t2

[space].
crewm,t3—crew type m available during epoch t3

[people].
workc,m,t3—crew for campaign c on work center w

during epoch t3 [people].
shipmenti,t5—planned shipment of item i at end of

epoch t5 [quantity].
dockc,i,t5—campaign c production quantity of item i

during epoch t5 [quantity].
costc—cost of production campaign c [$].
Decision variables:
SELECTc—1 if campaign c selected, 0 otherwise.
Formulation
subject to

•make SELECT �� c,i,t2� c �
c,t2��t2 t2��t2

demand ∀i, t2, (1)i,t2�

make SELECT� c,i,t2� c
c,t2��t2

•� demand � minstock ∀i, t2, (2)� i,t2� i,t2
t2��t2

space make SELECT �� i c,i,t2� c �
i,c,t2��t2 i,t2��t2

•space demand � maxspace ∀t2, (3)i i,t2� t2

•work SELECT � crew ∀m, t3 (4)� c,m,t3 c m,t3
c

SELECT � 1 ∀w, t4, (5)� c
{c}w,t4
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•dock SELECT �� c,i,t5� c �
c,t5��t5 t5��t5

shipment ∀i, t5, (6)i,t5�

SELECT � {0, 1} ∀c, (7)c

minimize cost SELECT � elastic penalties. (8)� c c
SELECT c

For each time epoch t2, each constraint (1) expresses
that cumulative production of item i should equal cu-
mulative demand by the end of that epoch and (2) ad-
ditionally stipulates that cumulative production of
item i less cumulative demand by the end of that epoch
should meet a minimum inventory goal. The symbols

and denote elastic constraints: For instance,• ••�, �, �

constraint (1) charges a linear penalty per unit viola-
tion below its cumulative demand goal (unmet de-
mand) or a different linear penalty per unit violation
above this goal (carrying inventory). Brown et al.
(1997) further motivate cumulative goals and this pre-
sentation style.
Each elastic constraint (3) expresses the maximum

storage goal at the end of epoch t2. During each epoch
t3, an elastic constraint (4) limits work-center-type m
crew utilization. During each epoch t4, an inelastic
packing constraint (5) limits the utilization of each
work center w. By the end of epoch t5, an elastic con-
straint (6) tries to accumulate sufficient production of
item i to meet a scheduled shipment. Campaign selec-
tions are binary (7).
The objective function (8) expresses for planning ho-

rizon epoch t1 the total cost of all selected production
campaigns plus any penalties for violating elastic
constraints.
This model is solved with an algorithm (that is, Brown

and Olson’s [1994]) that expresses the elastic penalties
logically so that the model appears to the solver to be
expressed exclusively in terms of binary variables.
This model can be extended to accommodate mul-

tistage production. The best alternative for multistage
production depends upon whether intermediate items
can be stored in inventory or not, whether the stages
are serial or only partially ordered, and whether pro-
duction uses fixed recipes. For instance, in our expe-
rience, pharmaceutical production involves a sequence
of brewing and purifying batch operations over a fairly
long time horizon. This type of production can be well
expressed by having each item induce a demand for its

predecessor items and by letting demand for the finished
item attract the optimal preceding production-
scheduling chain. Within each type-two epoch, at most
one stage of batch production is active. Petrochemical
refining and blending are similar but may employ
continuous-process production campaigns that run for
extended periods, consuming multiple intermediate in-
put items and producing multiple output items. Type-
two events update inventory resulting from production
and external demand and from internal process con-
sumption and production of all affected items. A job
shop has many items, each requiring a particular se-
quence of operations on the production facilities. Here,
simultaneous production campaigns each consist of ex-
actly one setup, production run and shutdown, type-four
epochs deconflict simultaneous demands for individual
production lines, and each production line is used for at
most one item in any type-four epoch.
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